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Multipole moments in general relativity 
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Physics Department, Montana State University, Bozeman, Montana 59717, USA 

Received 31 October 1978 

Abstract. It is proved that a stationary space-time for which all the angular momentum 
multipole moments vanish is static and that a static space-time for which all the mass 
multipole moments vanish is flat. 

1. Introduction 

Multipole moments attract some interest in general relativity mainly because they may 
provide an algorithm for interpreting solutions. The idea is that, having obtained the 
multipole moments of a given solution of Einstein’s equation, one may construct the 
Newtonian gravitational field with exactly the same moments and thus obtain the 
Newtonian analogue of the solution. A number of, generally inequivalent, definitions 
of multipole moments appear in the literature (Geroch 1970, Clarke and Sciama 1971, 
Hansen 1974, Hoenselaers 1976, Thorne 1977, and others). 

We here study the Geroch-Hansen multipole moments. These multipole moments 
are defined only for stationary, asymptotically flat space-times. Precisely, one defines 
two collections of totally symmetric, trace-free tensors at spatial infinity, the mass 
multipole moments and the angular momentum multipole moments. But these multi- 
pole moments might be considered more as mathematical curiosities than actual 
physical notions. Although they seem reasonable and they obey some of the properties 
of the Newtonian multipole moments, very little is known about the physical informa- 
tion they carry. For instance, although it is expected that to virtually any collection of 
multipole moments there corresponds an essentially unique space-time, no proof is 
apparently known. Here, we present a result which indicates that the Geroch-Hansen 
multipole moments in fact carry information about the space-time. In addition, this 
result also constitutes the first step towards a uniqueness proof. 

Theorem. Let (M,  gab) be a stationary, vacuum, asymptotically flat at spatial infinity 
space-time. Then, if all the angular momentum multipole moments vanish, the 
space-time is static. Moreover, if, in a static space-time, all the mass multipole 
moments vanish, the space-time is flat. 

If the space-time is vacuum only in some neighbourhood of infinity then the 
vanishing of the multipole moments implies that the space-time is static or flat only in 
that same neighbourhood of infinity. Of course, without any additional condition on 
the sources, one does not expect to be able to conclude anything about the non-vacuum 
region. 
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The main tool we are using is the following. 
Unique continuation theorem (Aronszajn 1957). Let M be a smooth, connected, 

m-dimensional manifold and let (N,  {xi}) be a chart of M. Let 9 be a linear, second- 
order, elliptic (i.e. the coefficients of the principal part of 9, aii(x)d2/axiaxi, form a 
positive definite matrix {a “(x)} in N )  differential operator with smooth (variable) 
coefficients. Let (b be a C“ scalar field on M which satisfies on N the differential 
inequality 

for some constant BN. Assume that (b and all its derivatives vanish at some point in N .  
Then 4 vanishes everywhere in N t .  

2. The proof 

We first recall the definition of multipole moments given by Hansen (1974). 
Let (M,  g a b )  be a stationary space-time which satisfies the vacuum Einstein equation 

and which is asymptotically flat at spatial infinity. So, in particular, we have the 
following. 

(i) A time-like Killing vector 5” with ‘norm’ A = -tara and twist (potential) w 
defined by V,w = EabcdS V 6 , where V a  is the derivative operator and Eabcd an alter- 
native tensor of (M, g a b ) .  

(ii) A three-dimensional manifold S,  the manifold of trajectories of the Killing field 
t”, with positive definite metric h a b  = gak + A - ‘ e a t b .  

(iii) A three-dimensional manifold S = S U A  with smooth, positive definite metric 
Lab = a ’ h a b ,  where A is a single point (representing spatial infinity) and is a smooth, 
positive scalar field on S. Moreover, we assume that = 0 ,  5aal~ = 0 ,  6 a f i b a \ A =  

2 L a b l A  where da is the derivative operator of Lab.  Now consider on s’ the scalar fields 

b c d  

It is a consequence of the Einstein equation that $J and J M  are smooth on S and that 
they satisfy the equations 

BmfimJJ = (is +y14)4J 
dm5mJM = (ig + yL4)4&4 ( 2 )  

where is the scalar curvature of Lab and l4 is a smooth scalar field on s which depends 
only on JM,  J J ,  and their first derivatives. Define, recursively, a set of tensor fields 
P a , , . . , ,  on S by P = J j , :  

p a l . , . a , + 1  = v [ f i a l P a Z  ... a , + ]  - ~ ~ ( 2 ~ - l ) s a , a , p a , . . . a , , , l  

where W denotes the operation of taking the totally symmetric, trace-free part of a 
tensor and where g a b  is the Ricci tensor of &b. The value o f p a ,  , . , a, at the point A is the 

t The actual result is much stronger; e.g., one needs to assume a lower differentiability for the manifold M, the 
elliptic operator 9 and the scalar 4. In this case, instead of requiring the vanishing of 4 and all its derivatives 
at some point of N, one assumes that q5 has a zero of infinite order in the one-mean at some point of N. For 
details, see Aronszajn er ai (1962). 
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2’ angular momentum multipole moment of (M,  g a b ) .  One obtains the mass multipole 
moments similarly, starting from &. The multipole moments defined in this way 
depend on the particular choice of the conformal factor on $. This freedom is a 
reflection of the freedom in the choice of an origin for Newtonian multipole moments. 
But although the multipole moments depend on the conformal factor, the vanishing of 
all the multipole moments of a given type-and so, the assumption of the theorem-is 
independent of the particular choice of the conformal factor. 

We now give the proof of the theorem. 
Consider first angular momentum multipole moments. Using the first of equations 

(2) it is easy to show that the trace of dalPa2,, . is of the form d,, . . . f i a S - ] $ ~  + 
lower-order derivatives of J J .  Then, since also d(=, ,. , f i a S ) $ ~  = daL. . fia,&~ +lower- 
order derivatives of C$J one concludes that Pa, , .  . a, = D,, . . . Da,4j + lower-order 
derivatives of JJ,  Hence a simple induction shows that the vanishing of all the multipole 
moments is equivalent to the vanishing at the point A of C$J and all its derivatives. 

Then we apply the unique continuation theorem. Choose any neighbourhood N of 
A in s’ with compact closure. Since $ + $c4 is smooth on $, it is bounded on N ;  let BN 
be an upper bound for il? + 7c4. By virtue of the first of equations (2) the inequality (1) 
is immediately satisfied with linear elliptic operator dmd, and constcnt BN. So, $J = 0 
in any such neighbourhood of A in $. Using a compact covering of S we can conclude 
that $, = 0 on $. Since # 0 on S,  the twist w should vanish on S and hence the 
space-time is static. 

For the second part of the theorem again one first shows that the vanishing of all the 
mass multipole moments on a static space-time implies that qbM = 0 on S and hence, 
since w = 0 too, that A = 1 in M. Moreover, equation 2.17 of Hansen (1974) (an 
equation on the Ricci tensor of hab, A and w, which is a consequence of the Einstein 
equation) with & = 41 = 0 implies that the Ricci tensor of (S, hab) vanishes and hence 
- S  is three dimensional!-(S, hab) is flat. Since the space-time metric is gab = 

Our theorem provides only a small portion of what is a more interesting result which 
is expected to be true, namely that two stationary space-times with the same sets of 
multipole moments are isometric at least in some neighbourhood of infinity (Hansen 
1974). The theorem is not a uniqueness proof because the multipole moments do not 
depend linearly on the potentials &I and J J ,  because equations (2) are not linear (c4 
depends on &, JJ and their first derivatives) and because a uniqueness proof should 
also conclude that the corresponding three-dimensional metrics are isometric. 

An interesting example is provided by the Papapetrou (1953) class of solutions. For 
the asymptotically flat space-times in this class all the mass multipole moments vanish 
while the angular momentum multipole moments do not. Indeed, in this class, we have 
for the stationary Killing field 

h a b - S a t b r  (M gab) is flat too; QED. 

A = 2f/(f2+ 1) and w = ( f 2  - l)/(f2 + 1) 
where f is any solution of a certain second-order differential equation on a two- 
dimensional manifold. Since A 2 + w 2  = 1,  the mass potential $,,, vanishes on $. 

One can essentially repeat the present proof to show that a static, asymptotically flat 
solution of the Einstein-Maxwell equation for which all the electromagnetic multipole 
moments (Hoenselaers 1976) vanish is in fact a solution of the vacuum Einstein 
equation. 

Note that the potential C& used by Hansen to define the mass multipole moments 
does not reduce, in the static case, to the potential used by Geroch to define multipole 
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moments. One expects that, although the potentials are different, they eventually 
produce the same multipole moments, but this has been proved only for static and 
axisymmetric space-timest (Fette 1975, unpublished). Some more evidence that the 
two collections of multipole moments may be the same is provided by the theorem: one 
can show that a static space-time for which all the multipole moments vanish is flat by 
using either the Hansen or the Geroch multipole moments. 
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